Algorithms

Lecture#4

Review of last lecture

* Heap :is a nearly complete binary tree. Of
height °(lgn)

VMax-Heap Property: The key of a node 1s > than the keys of its
children.

Review of last lecture...

Visualizing an Array as a Iree

Root of tree: first element in the array, corresponding to index = 1

If a node s index is i then:

(]
parent(i) = {EJ ; returns index of node's parent, e.g. parent(5)=2

left(i) = 2i; returns index of node's left child, e.g. left(4)=8
right(z) = 2¢ + 1; returns index of node's right child, e.g. right(4)=9

1234567 89 10
N NS N D
=16|14]10[8 |7 [9 |3]2] 4]

Operations with Heaps

- Max Heapify (A, 1)

Correct a sigle violation of the heap property occurring at
the root 7 of an otherwise perfect subtree. ..

Setting: Assume that the trees rooted at left(7) and r1ght(7) are
max-heaps, but element A[] violates the max-heap property:

or A[right(7)].

1.e. Al7] 1s smaller than at least one of A[lefi(7)

Goal: fix the subtree rooted at 7.

Operations with Heaps

Max_heapify (A, i)

I — left(i)

r «— right(i)
Find the index of the largest if | < heap-size(A) and A[l] > Ali]
element among Ali], Alleft(i)] _ then largest « [
and A[right(i)] else largest «— 1

if r < heap-size(A) and A[r] > Allargest]

then largest « r

If this index is different than i, iIf largest # 1
exchange Ali] with largest - then exchange A[i] and Allargest]
element; then recurse on subtree MAX _HEAPIFY (A, largest)

If A[1] 1s smaller than both A[left(?)] and A[right(i)] why do I insist on
swapping with largest and not with any one of them, arbitrarily?

Max_ Heapify (Example)

MAX_HEAPIFY (A,2)
heap_size[A] =10

Exchange A[2] with A[4]

Call MAX_HEAPIFY(A,4)
because max_heap property
is violated

Exchange A[4] with A[9]
No more calls

Operations with Heaps

- Max_Heapify (A, 1)

Correct a single violation of the heap property occurring
at the root 7 of an otherwise perfect subtree.
Time O(log n).

- Build Max Heap (A)

Produce a max-heap from an unordered array 4.

Operations with Heaps

Build Max Heap(A):
heap size(A) = length(A)
for i « | length{A|/2| downto 1
do Max_Heapify(A,)

Operation with Heaps

- Max Heapify (A, 1)

- Correct a single violation of the heap property occurring
at the root 7 of an otherwise perfect subtree.
- Time O(log n).

- Build Max Heap (A)

- Produce a max-heap from an unordered array A4.

- Heapsort (A)

- Sort an array A4 using heaps.

Operation with Heaps
HeapSort

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

s

. Swap elements A[n] and A[1]:
now max element 1s at the end of the array!

4. Discard node » from heap
(by decrementing heap-size variable)

5. New root may violate max heap property, but its
children are max heaps. Run max heapify to fix this.

6. Go to step 2.

lllustrate the operation of Heapsort on the
array A[5,13,2,25,7,17,20,8,4,

(d)
E
T =

/\
/\ /\.ﬂ,

‘*.
®)

/\

v wer @

(e)

/_»'\
/ N / \

.@

(©)

Heap implementation of priority queue

* Heaps efficiently implement priority queues.

* Max-priority queues implemented with max-
heaps. Min-priority queues are implemented
with min-heaps similarly.

Priority queue

* is adata structure for maintaining a dynamic
set S of elements, each with an associated
value called a key.

MAX-Priority Queue Operations

Max-priority queue supports the following
operations:

MAXIMUMY(S) : returns element of S with largest
key.

EXTRACT-MAX(S): removes and returns element
of S with largest key.

INCREASE-KEY (S, x, k): increases value of element
X's key to k. Assume k >x’s current key value.

INSERT(S , x): inserts element x into set S.

Finding the Max element

* Getting the maximum element is easy: it’s the
ROOT

Heap-Maxivum(A)
return A|1]

Extracting Max Element

Given the array A:
 Make sure heap is not empty.

* Make a copy of the maximum element (the
root).

* Make the last node in the tree the new root.
* Re-heapify the heap, with one fewer node.
* Return the copy of the maximum element.

Extracting Max Element...

HEAP-EXTRACT-MAX(A.n)

ifn <1
error “heap underfiow™
max = A[l]
All] = Aln]
n=mn-—1
Max-HEAPIFY (A, 1,n) // remakes heap
return max

EXAMPLE

Run HEAP-EXTRACT-MAX on the following heap

Increasing Key value

Given set S, element x, and new key value k:
 Make sure k > x’s current key.
* Update x’s key value to k.

* Traverse the tree upward comparing x to its
parent and swapping keys if necessary, until
X's key is smaller than its parent’s key.

Increasing Key value...

HEAP-INCREASE-KEY (A, 1, key)
if frey < Ali]
error “new key 1s smaller than current key™
Ali] = key
while i > 1 and A[PARENT(i)] < A[i]
exchange A[i] with A[PARENT()]
I = PARENT(i)

EXAMPLE

Increase key of node 9 in the following heap to
have a value of 15.

Pl _"‘-._I Ik\ 2 y L 1
[2) 4 1 '_ '_' -
M __— _
.1._
. TN
N | 16
|16) 2 /h_/\/j
2 /) \é (15 (10
\ 14 | 10 | 4 /.'_ x 5 6 / 1\ 7
4//\, 5 ‘5_/"/\/_?_\ ‘14 Y (o) [3)
./ __ - I/ ‘__ /) W & '_
\15) 9 /"I (3 J g / \ 9 1137
o - ofoXe
o N - ™~ / -_ /"I — d
y '

Inserting into the heap

Given a key k to insert into the heap:

ncrement the heap size.

nsert a new node in the last position in the
neap, with key -o<.

ncrease the -o< key to k using the HEAP-

NCREASE-KEY procedure defined above.

Inserting into the heap...

MAX-HEAP-INSERT (A, key. n)
n=n-+1
Aln] = —o0
HEAP-INCREASE-KEY (A, n, kev)

Example

Divide- and -conquer Next time !!!!

